Free Udemy Courses and Zero Broken link.
The only website where expired courses are deleted.


Share :

Publisher : Toru Tamaki

Course Length : 4 hours

Course Language : Japanese


このオンラインレクチャーでは,画像処理や3次元コンピュータビジョンの基礎を学ぶことができます.資料は,"Computer vision: models, learning and inference"の著者Simon Princeがwebで公開しているスライドを用いています.話題はコンピュータビジョン,画像認識が主ですが,確率モデルや最尤推定,ベイズ推定を用いた推論手法も扱っていますので,パターン認識や機械学習がどのように応用されるかを理解することができます.


このオンラインレクチャーでは,書籍のPart IV(Chapter 13--15)からの画像処理,カメラモデルの基礎を扱います.(Chapter 12以前のレクチャーは「ベイズ推定とグラフィカルモデル:コンピュータビジョン基礎1」です)(Chapter 16以降は含まれていません)

Computer vision: models, learning and inference

The slide is copyrighted by Simon J. D. Prince, the author of the book "Computer vision: models, learning and inference", and is available at the book website.

The use of the slide for this online lecture is approved by Simon J. D. Prince and recognized by a contact person of the book publisher. The lecturer thanks them for their kind agreement.

Who is the target audience?
  • 統計的機械学習の応用を学びたい人
  • コンピュータビジョンを勉強したい人
  • 画像認識を勉強したい人
  • 線形代数(スカラ,ベクトル,行列,転置,内積,逆行列,固有値,特異値分解)
  • 確率(平均,分散,共分散行列,多変数確率分布,期待値)
  • 微分(1変数関数の極値計算・多変数関数の微分)
  • 積分(多変数関数の積分,重積分)
  • 推定手法(最尤推定,最小2乗法)